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The introduction of semi-automated driving systems is expected to mitigate the safety consequences of 
human error. Observational findings suggest that relinquishing control of vehicle operational control to 
assistance systems might diminish driver engagement in the driving task, by reducing levels of arousal. In 
this study, drivers drove a Tesla Model S with Autopilot in both semi-automated and manual modes. Driver 
behavior was monitored using a combination of physiological and behavioral measures. Compared to 
manual driving, a reduction in driver physiological activation was observed during semi-automated driving. 
Also, performance to the peripheral detection task suffered in semi-automated mode, with slower response 
times recorded in this condition than during manual driving. Taken together, our data suggest that semi-
automated driving might not ease safety consequences of human error. Instead, these findings suggest it 
might cause a drop in driver monitoring, possibly followed by a spike in automation-generated distraction. 
 

INTRODUCTION 
 

Automated vehicle systems hold the promise of 
enhancing traffic efficiency, reducing the potential for human 
error, and making driving safer. In fact, recent estimates 
suggest that a full adoption of driver assistance technology 
would reduce the number of road crashes and fatalities by 
25% to 90% (European Road Observatory, 2016; Litman, 
2017).  

The Society of Automotive Engineers defines six levels 
of vehicle automation, from level-0 or fully-manual driving, to 
level-5 or fully-automated driving (SAE, 2014). Current semi-
automated, level-2 vehicles are equipped with lateral and 
longitudinal control systems that automatically keep the 
vehicle within the lane, and maintain it at a certain speed and 
distance from the forward vehicle, respectively. One 
requirement of semi-automated driving is for drivers to 
monitor the functioning of the systems and safely regain 
control of the vehicle in case of system failures (SAE, 2014). 

By stipulating an inverted U-shape relationship between 
arousal and performance levels, the Yerkes-Dodson law 
(Yerkes & Dodson, 1908) suggests that extremely low (or 
extremely high) levels of arousal or stimulation will lead to a 
decline in human performance. Within the context of driving, 
the Yerkes-Dodson law is adopted to account for passive 
fatigue and boredom (Matthews & Davies, 2001). As drivers 
reach optimal levels of performance, the increase in workload 
may then lead to an increase in self-regulatory behaviors 
(Strayer & Fisher, 2015), active distraction and overload 
(Coughlin, Reimer, & Mehler, 2011). 

Studies of driver interaction with advanced driver 
assistance systems show the potential for vehicle automation 
to have unintended consequences on situation awareness. In 
the study by Stanton and Young (2005), for instance, drivers 
drove a simulated vehicle with or without Adaptive Cruise 
Control (ACC) engaged. The system maintained the vehicle at 
a certain speed and distance from the forward car. The authors 
found that when ACC was engaged this had the potential to 

reduce levels of driver situation awareness Similar findings 
were obtained in the study by Vollrath, Schleicher and Gelau 
(2011), with participants driving a simulated vehicle with 
increasing levels of longitudinal vehicle automation: fully-
manual, Cruise Control (the system maintains the vehicle at a 
certain speed), Adaptive Cruise Control. Compared to manual 
driving, using Cruise Control and ACC was associated with a 
reduction in the number of speed violations. However, further 
analysis revealed diminished situation awareness when driving 
with Cruise Control and ACC activated, resulting in drivers’ 
impaired ability to readily respond to upcoming traffic 
hazards.  

What found in the studies by Stanton and Young (2005) 
and Vollrath et al. (2011) is consistent with what hypothesized 
by the Yerkes-Dodson Law. As participants relinquished 
control of vehicle operations to assistance systems, this 
resulted in reduced driver engagement in the primary task, 
and, in turn, diminished awareness of the surrounding traffic 
scenario. Observational data on driver interaction with partial 
automation confirm this. In her evaluation of a Tesla Model S 
and its Autopilot system, for instance, Endsley (2017) 
identified some issues associated with the design and user 
interface of the semi-automated driving system. First of all, 
given the limited amount of information provided about the 
system capabilities and limitations, this caused the driver to 
develop an inaccurate mental model of the system, an aspect 
often associated with automation misuse (Parasuraman & 
Riley, 1997). The author also noticed that the functioning of 
the apparently reliable system, led to episodes of mind-
wandering and disengagement from the driving and 
monitoring task. In turn, this caused delayed responses to 
unexpected traffic events. In the study by Banks and 
colleagues (2018) with participants driving an on-road semi-
automated vehicle, the authors noticed similar driver 
disengagement episodes. In particular, drivers appeared to 
reduce their level of monitoring of the driving task, and, 
gradually, fall out-of-the-loop. For additional findings, see 
Biondi, Goethe, Cooper and Strayer (2016). 
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Taken together, these observational findings suggest an 
indirect association between vehicle automation and driver 
engagement in the driving task. However, a systematic 
investigation of the effect of semi-automated driving on the 
driver state and levels of arousal is missing.  

In this study, we adopt a combination of behavioral and 
physiological measures to examine the potential for on-road 
semi-automated driving to cause a decline in levels of driver 
arousal and workload. While driving a Tesla vehicle in 
Autopilot mode, driver physiological activation was monitored 
by recording variations in heart rate and heart rate variability. 
Driver performance to the peripheral detection task was also 
measured, as slower response times are often observed as a 
result of under-arousal and sleepiness (Gershon, Shinar, & 
Ronen, 2009). Self-reported measures of mind-wandering 
were also collected. 

 
METHOD 

 
Participants 
 

Twenty-two participants (14 males, 8 females) between 
the age of 21 and 35 (M=25.4) were recruited to participate in 
this study. All participants had normal or corrected-to-normal 
vision, did not use cochlear implants or any other hearing 
device and did not report having hearing deficits. Participants 
completed a University of Utah IRB-approved consent 
document and a general demographics survey.  
 
Materials and measures 
 

Vehicle. The Tesla Model S was equipped with 
Autopilot and Autosteer (version 8.1). These two systems 
working jointly maintain the vehicle at a certain speed and at 
the center of the lane. When following a forward vehicle, 
Autopilot also maintains a set distance to it. The Tesla was 
also equipped with an Automatic Lane Change system that 
automatically moves the vehicle to an adjacent lane when 
instructed by the driver. 

Physiological measures. Driver physiological activation 
was recorded using eMotion Faros 180 heart and respiration 
rate monitor from Biomation at 250 Hz sampling rate. To 
record electrocardiogram (ECG) participants wore three 
electrodes: one placed below the left and right collarbones and 
the third on the last left rib. Data were collected and analyzed 
using the Cardiscope software (HASIBA Medican GmBH, 
Biomation). Spectral electroencephalogram (EEG) was also 
recorded throughout the study, but would not be reported here. 

Continuous ECG data were processed using a custom 
software (Cardiscope Analytics), to detect R-wave peaks with 
recommended settings (Berntson, Quigley, & Lozano, 2007; 
Task Force, 1996). Adopting standard practices, the 
automatically detected R-wave peaks were visually inspected 
for accurate detection and manually corrected if improbable 
values were marked by custom software. After data cleaning, 
data were processed to calculate the mean heart rate and heart 
rate variability measures for each phase (manual and semi-
automated driving) for each participant. Heart rate was defined 

as the number of heart beats per minute (Berntson et al., 2007; 
Task Force, 1996). A higher heart rate is indicative of greater 
physiological activation and in driving literature is associated 
with higher workload (Mehler, Reimer, Coughlin, & Dusek 
2009). A time domain index of heart rate variability, 
triangular interpolation of NN (ms) interval histogram (TINN) 
was also estimated. TINN is the baseline width of the 
distribution measured as a base of a triangle, approximating 
the normal-to-normal (NN) interval distribution (the minimum 
square difference is used to find such a triangle; for details see 
Task Force, 1996). Lower TINN implies lower heart rate 
variability. TINN was selected as it is a sensitive measure of 
workload and mental stress (Heine et al., 2017; Orsila et al., 
2015).  

Peripheral detection task. For the peripheral detection 
task, participants wore a vibrotactile motor on their left arm, 
and responded to the onset of the vibration by pressing a 
micro-switch located on their left index finger against the 
steering wheel. The motor was placed on the arm to minimize 
interference with the heart rate recording equipment. The 
vibration had a duration of 1 second. To minimize the risk of 
vibrotactile stimuli interfering with natural fluctuations in 
arousal, we adopted an inter-stimulus interval of 5 minutes. 

Subjective measure. During the experimental drives 
(manual and semi-automated), the presentation of the 
vibrotactile stimulus also prompted participants to indicate 
their mind-wandering state. Based upon the protocol 
developed in the study by Smallwood, Beach, Schooler and 
Handy (2008), a 3-point scale with the following definitions 
was developed: (1) fully attentive to the driving task, (2) 
aware of my thoughts being away from the driving task, (3) 
immersed in my own thoughts and unaware of this. 
 
Design and Procedure 
 

Design. Two within-subject experimental conditions 
were implemented: manual and semi-automated driving 
modes. During manual driving, participants were instructed to 
drive a 2017 Tesla Model S 70 in manual mode. During semi-
automated driving, participants drove the Tesla with Autopilot 
and Autosteer automation engaged. The order of conditions 
(manual and semi-automated mode) was counterbalanced 
across participants. 

Procedure. Set-up occurred on the university campus in 
Salt Lake City (UT). After providing an overview of the study, 
the heart rate and EEG sensors were placed on the participant 
following standard protocols (Berntson et al., 2007; Task 
Force, 1996). Participants were then placed in the driver’s seat 
and the physiological signals were monitored for stability. 
Next, baseline heart rate and EEG signals were recorded for 5 
minutes while parked. 

Participants were instructed on how to respond to the 
vibrotactile stimulus and completed some practice trails until 
they were comfortable with the task. Participants were then 
instructed on the 3 levels of mind wandering (Smallwood et 
al., 2008): 1 = fully attentive, 2 = away from the driving task, 
(3) fully immersed in my own thoughts. Participants were 
informed that the vibrotactile motor would vibrate at random 
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intervals as a cue to report their state of mind. They were 
asked to verbally categorize their state of mind (out of the 3 
options) immediately before the motor vibrated as accurately 
as possible. Instructions were also given on how to activate, 
use, and adjust Autopilot and Autosteer features during the 
semi-automated driving phase of the study.  

Driving ensued once participants understood all the 
instructions. Participants drove on Interstate-80 to Aragonite 
(UT) from Salt Lake City (UT) in either manual or semi-
automated mode, and then switched conditions for the return 
drive. A research associate sat in the rear seat during the entire 
duration of the drive, and driver behavior was recorded via 
audio and video recordings. The route was a 63-mile long, 
four-lane, two-carriageway road with and an annual average 
daily traffic of about 9,000 vehicles (UDOT, 2018). The speed 
limit varies from 70 MPH to 80 MPH along the route. In 
between the two drives, participants were given a 15-minute 
break at a rest stop in Aragonite (UT). During each drive, 
performance to the peripheral detection task, state of mind, 
and continuous physiological data were collected. After 
completing each mode, participants also reported subjective 
ratings of workload.   Data analysis was conducted in R (R 
Core Team, 2000). 

 
RESULTS 

 
Peripheral detection task. Data from four participants 

were excluded from the analysis due to recording issues. 
Response times collected for the peripheral detection task 
were analyzed. Given the low number of misses (accuracy > 
99.9%), accuracy data were not analyzed. A paired t-test was 
conducted to investigate whether RT collected during semi-
automated driving differed from those collected during manual 
driving. Participants responded significantly slower when 
driving in semi-autonomous mode (M=1068, SE=41.87) 
compared to manual mode (M=879, SE=36.16), as shown 
through a t-test, t(17) = 2.69, p<.05).  

Figure 1. Average response times (in ms) to the peripheral 
detection task by driving mode (manual vs. semi-automated) 

and time of the drive (Half 1 and 2). Error bars represent 
standard error. 

 
Physiological measures. Physiological data from ten 

participants were removed from the analyses due to recording 
and artifact issues during one or two drives. A t-test with 
Mode (2 levels: semi-automated, manual) as independent 
variable and average heart rate as dependent variable revealed 
lower heart rate during semi-automated driving (M = 72.12 
bpm, SE = 2.62), compared to manual driving (M = 75.03 
bpm, SE = 2.68), t(11) = 3.28, p < .05. 

Heart rate variability calculated as TINN was also 
compared across the two driving modes. Relative to manual 
driving (M = 413.33 ms, SE = 40.45), driving the vehicle in 
semi-automated mode led to higher heart rate variability (M = 
468 ms, SE = 36.36). This suggests an increase in 
parasympathetic activity during semi-automated driving, 
compared to manual driving. No differences in respiration rate 
were found: manual (M = 18.56 rate per minute, SE = .44) vs. 
automated (M = 18.93 rate per minute, SE = 2.22), p = .15. 
This indicates that the differences in heart rate variability were 
not caused by task differences in respiration rate in manual vs. 
semi-automated driving modes. Average heart rate variability 
is presented in Figure 2. 

Self-reported measure. Pearson’s Chi-squared analysis 
did not reveal significant differences between semi-automated 
and manual driving in self-reported mind-wandering (on the 3-
point scale), Χ2 (2) = 1.33, p > .05.  

 

 
 

Figure 2. Heart rate variability calculated as triangular 
interpolation of NN or TINN in ms. Data are presented by 
mode (manual vs. semi-automated). Error bars represent 
standard error. 
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DISCUSSIONS 
 

Levels of driver arousal decreased during semi-
automated driving, and their responsiveness to peripheral 
stimuli diminished as a result of driving in Autopilot mode. 
Compared to manual driving, average heart rate decreased and 
heart rate variability increased when driving with assistance 
systems activated. This pattern of results is consistent with the 
literature on mind-wandering, showing an increase in 
parasympathetic activity when transitioning into a state of 
relaxation (Ottaviani, Shapiro, & Couyoumdjianb, 2013).  

Studies on the effect of workload on physiological 
activation show a direct association between average heart rate 
and cognitive load. In the study by Mehler, Reimer, Coughlin, 
& Dusek (2009), for instance, an increase in average heart rate 
from 73.6 bpm to 79.4 bpm was recorded with drivers 
completing more cognitively demanding versions of the n-
back task (0-back to 2-back). Similarly, in the study by 
Biondi, Coleman, Cooper and Strayer (2016), drivers 
experienced higher heart rate as the secondary-task became 
more demanding. In this study, the reduction in average heart 
rate and increase in heart rate variability recorded during semi-
automated driving is then indicative of the reduced 
physiological activation experienced by drivers as a result of 
their relinquishing vehicle operations to assistance systems. 

Performance to the peripheral detection task is also 
sensitive to mental load, or the lack thereof. In the study by 
Gershon, Shinar and Ronen (2009), participants drove a 
simulated vehicle for 2 hours, while responding to the onset of 
one of three colored lights that appeared on the dashboard, in 
the vicinity of the steering wheel. As participants became 
more fatigued (an increase in subjective measures of fatigue 
and heart rate variability was observed over time), 
performance to the detection task suffered and response times 
became slower. Studies on the effect of overload on the 
performance in the Detection Response Task or DRT (ISO, 
2016) show consistent results, with longer response times and 
lower accuracy recorded as the amount of cognitive resources 
available to drivers decreases. (Harbluck, Burns, Hernandez, 
& Glazduri, 2013; Jenness et al., 2016). A pattern of results 
consistent with that of Gershon et al. (2009) was found in our 
study. The drop in mental workload that characterized semi-
automated driving, resulted in slower response times in the 
peripheral detection task. In particular, response times 
recorded in Autopilot mode were longer than those recorded 
during manual driving by about 188ms, a greater difference 
than that typically found in distraction studies (Strayer et al., 
2015). 

One of the main risks associated with vehicle automation 
is for drivers to gradually become under-stimulated and, 
eventually, fall out-of-the-loop (Cunningham, & Regan, 
2015). Research in user interaction with automation in the 
aviation and maritime fields suggest that human performance 
in monitoring tasks deteriorates over prolonged amount of 
times, as a result of the increase in complacency toward the 
system and/or the fragmented knowledge toward its 
capabilities and limitations (Bailey & Scerbo, 2007).  

Surprisingly, levels of self-reported mind-wandering 
were not affected by driving mode. Contrary to our 
expectations, subjective data did not seem to reflect a decline 
in driver engagement in the monitoring task as a result of 
driving in semi-automated mode. A plausible explanation to 
this can be found in the literature on the effect of cognitive 
overload on self-awareness. In the study by Sanbonmatsu and 
colleagues (2015), participants drove a simulated vehicle in 
manual mode while being engaged in a cell phone task. 
Relative to the control condition with no secondary task, the 
cognitive overload originated from the concurrent cell phone 
conversation, and subsequent reduction in mental resources 
directed to driving, resulted in a decline in the driver 
performance, and, interestingly, their self-awareness of that 
impairment. In other words, overloaded drivers were not only 
worse at driving, but they had a poor awareness of that decline 
in performance. In our study, we hypothesize the condition of 
underload experienced during semi-automated driving to have 
impaired driver self-awareness, and, in turn, their ability to 
accurately estimate their state. 

Our data document the direct consequences of semi-
automated driving on under-arousal.  However, further 
analysis is needed in order to investigate temporal fluctuation 
in driver physiological activation, and to examine how 
increased exposure to semi-automated driving would affect 
heart rate and heart rate variability. As drivers transition from 
being novices to experts, we predict them to become even 
more disengaged from driving, and possibly show signs of 
self-regulation and active distraction.  

This study demonstrates the potential for semi-
automated driving to have unexpected safety consequences. 
Our findings are consistent with the literature on user 
automation, and help shed light on the causes of the recent 
accidents involving semi-automated driving (NTSB, 2017). 
Our participants had no prior experience with level-2 
automated driving systems, were monitored during the data 
collection, and used Autopilot for a limited amount of time. 
Despite this, drivers showed signs of under-arousal during 
semi-automated driving (videos show participants yawning, or 
having difficulty keeping their eyes open), resulting in reduced 
vigilance and awareness of traffic hazards. Future work will 
compare novice and expert Tesla drivers as we predict a 
greater drop in arousal to produce an increase in self-
regulatory activities for experts.   
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